ABN 31 105 704 078

13 Brock Street, Thomastown Victoria 3074 (P) +61 3 9464 4617 (F) +61 3 9464 4618

GEOTECHNICAL SITE CLASSIFICATION LOT 301 FIVE FARMS ESTATE STAGE 3, CLYDE NORTH

Prepared for Frasers Property Australia c/- Beveridge Williams Pty Ltd

Report Reference: G4589.3

Date: 17 May 2022

ABN 31 105 704 078

13 Brock Street, Thomastown Victoria 3074 (P) +61 3 9464 4617 (F) +61 3 9464 4618

PROJECT DETAILS

Project Reference	G4589.3	Rev	AA
Project Title	Five Farms Estate Stage 3		
Project Location	Clyde North	State	VIC
Date	17 May 2022		

CLIENT DETAILS

Prepared For (Client)	Frasers Property Australia		
Prepared For (Facilitator)	Beveridge Williams Pty Ltd		
Client Address	Level 9, 484 St Kilda Road	Suburb	Melbourne

DISTRIBUTION

Original Held By	Ground Science Pty Ltd
One (1) Electronic Copy	Frasers Property Australia
One (1) Electronic Copy	Beveridge Williams Pty Ltd

This document presents the results of the site classification conducted for the aforementioned project and is detailed for the sole use of the intended recipient. Should you have any questions related to this report please do not hesitate to contact the undersigned.

Author:

Gee Singh, MIEAust (NER) Senior Geotechnical Engineer

Table of Contents

1.	IN	NTRODUCTION	1
2.	Р	ROJECT BACKGROUND	1
3.	Р	ROJECT AIMS	1
4.	S	COPE OF WORKS	1
5.	R	ESULTS	2
	5.1	REGIONAL GEOLOGICAL CONDITIONS	2
	5.2	SURFACE CONDITIONS	2
	5.3	SUBSURFACE CONDITIONS	2
	5.4	GROUNDWATER	2
	5.5	LABORATORY TESTING	2
6.	D	ISCUSSION & RECOMMENDATIONS	3
	6.1	AS2870-2011 SITE CLASSIFICATION	3
	6.2	FOOTING DESIGN	3
7.	G	ENERAL RECOMMENDATIONS	4
	7.1	FOOTINGS	4
	7.2	DRAINAGE DESIGN REQUIREMENTS (AS2870-2011)	4
	7.3	SUBGRADE PREPARATION	5
8.	D	ISCLOSURE	5
9.	L	IMITATIONS	6
10). R	EFERENCES	7
T/	ABLE	es.	
		1: LABORATORY TEST RESULTS SUMMARY	2
TA	ABLE	2: SITE CHARACTERISTICS	4
۸۵	DDEN	IDICES	
		NDIX A SITE LAYOUT PLANS	
		NDIX B BOREHOLE LOG SHEETS	
ΑI	PPEN	NDIX C LABORATORY RESULTS	

1. INTRODUCTION

This report presents the results of the geotechnical site classification investigation carried out by Ground Science for the Five Farms Estate, Stage 3 located in Clyde North, Victoria (the site). This report presents the results for:

Lot 301

The scope of works detailed herein was commissioned by Beveridge Williams Pty Ltd (facilitator) on behalf of Frasers Property Australia (Principal).

2. PROJECT BACKGROUND

The Five Farms residential development included the construction of building platforms as part of the bulk earthworks phase of the project, which primarily involved the placement of controlled fill and site cuts. Controlled fill was placed and compacted to Level 1 procedures in general accordance with AS3798 (2007) 'Guidelines on Earthworks for Residential and Commercial Developments'. Ground Science were the nominated Geotechnical Inspection and Testing Authority for the Level 1 filling works carried out within this stage (report reference: GS5860.2 AA dated 19th April 2022).

The professional advice provided in this report is based on the information provided at the time of the report preparation and may not be valid if changes are made to the site, the development proposal, or the construction methods. In the event of such changes, further advice should be sought from Ground Science.

3. PROJECT AIMS

The aims of the investigation were as follows:

- To assess the subsurface conditions at the site relevant to the proposed development through a desktop regional geological study.
- To recover soil samples for laboratory analysis.
- To log the soils as per the guidelines presented in AS1726 (2017) 'Geotechnical Site Investigations'.
- To classify the site in accordance with AS2870 (2011) 'Residential Slabs and Footings'.
- To calculate the characteristic surface movement (Y_S) for the site.
- To provide advice on allowable bearing pressures and geotechnical parameters for the design of footing systems.
- To provide general construction advice.

4. SCOPE OF WORKS

The site classification investigation for Stages 2 & 3 was carried out simultaneously. The scope of works involved the drilling of 50 boreholes (BH1 – BH50) spatially distributed across the allotments using a truck mounted (GT10) drilling rig supplied and operated by Ground Science. The soils were logged and hand classified using visual tactile methods (AS1726) by a qualified geotechnical engineer from this office. Representative soil samples were recovered from the controlled fill & residual soil deposits for a total of 12 Shrink/Swell Index (Iss) tests. Laboratory testing was carried out in Ground Science's NATA accredited testing facility in Thomastown, Victoria.

Borehole locations are shown on the site plan in **Appendix A**. Engineering borehole log sheets for this allotment and surrounding allotments are presented in **Appendix B**. Laboratory test reports are presented in **Appendix C**.

5. RESULTS

5.1 REGIONAL GEOLOGICAL CONDITIONS

The Geological Survey of Victoria map sheets indicate the site is underlain by Miocene to Pliocene aged 'Red Bluff Sandstone' deposits, with Pleistocene to Holocene aged alluvial deposits indicated towards exist to the west and south/west. This assessment excludes controlled (engineered) fill noted to have been placed on the allotments, however the controlled fill materials are noted to have been generally derived from blending onsite soils or imported fill materials from local source sites of relatively similar geological characteristics.

5.2 SURFACE CONDITIONS

The site is located west of Pound Road and southeast of the Hardys Road / future Bells Road intersection. At the time of our investigation, the site was observed to be generally flat with fair drainage conditions noted. The surface of the allotments was dry and generally comprised barren soil. The site was generally trafficable to a 4WD mounted drilling rig. No trees were observed to be located within close proximity to the building envelopes.

5.3 SUBSURFACE CONDITIONS

The subsurface soil profile encountered during the field investigation is considered to be generally consistent with our expectations of the site. The subsurface soils generally comprised **controlled (engineered) fill** recovered as Sandy CLAY, Silty CLAY or Silty/Clayey SAND overlying **naturally occurring** inferred 'Red Bluff Sandstone' residual soils comprising Silty/Sandy CLAY. The controlled fill and residual soil deposits were generally medium dense to dense, stiff to very stiff, and moisture close to the plastic limit.

5.4 GROUNDWATER

Groundwater was not encountered during the borehole drilling. The Visualising Victoria's Groundwater dataset indicates the regional groundwater table is less than 5.0mbgl. During wet seasons or following torrential rainfalls, there is a possibility for a perched water table to develop in the area. This should be carefully considered during the construction stage, especially when footing excavations are left exposed or prior to topsoil application.

5.5 LABORATORY TESTING

A summary of the laboratory test results are presented in Table 1:

Table 1: Laboratory Test Results Summary

Sample #	Borehole	Depth (m)	Geological Origin	Shrink Swell Index Iss (%)
S1	BH1	1.0 – 1.3	Residual Soils	3.8
S2	BH6	0.8 – 1.0	Controlled Fill	0.5
S3	BH10	1.5 – 1.8	Residual Soils	1.6
S5	BH16	0.6 – 0.9	Residual Soils	0.9
S6	BH19	1.5 – 1.7	Residual Soils	1.6
S7	BH22	1.0 – 1.3	Controlled Fill	3.5
S8	BH26	0.5 – 0.8	Controlled Fill	1.3
S10	BH32	1.5 – 1.7	Residual Soils	2.8
S12	BH41	0.5 – 0.8	Controlled Fill	0.7
S13	BH44	1.5 – 1.7	Residual Soils	2.9
S14	BH46	0.7 – 1.0	Residual Soils	0.4
S15	BH50	1.2 – 1.5	Residual Soils	1.3

6. DISCUSSION & RECOMMENDATIONS

6.1 AS2870-2011 SITE CLASSIFICATION

The site has been classified in general accordance with the guidelines presented in AS2870 (2011) 'Residential Slabs and Footings'. The following site characteristics were adopted in the site classification assessment:

Table 2: Site Characteristics

Climatic Zone	2 (Figure D1 of AS2870-2011)
Soil Profile Group	Group 3 (Table D1 of AS2870-2011)
Depth of Soil Suction Change (Hs)	1.8m

Based on the results of the geotechnical investigation, the geological setting and the guidelines presented in AS2870 (2011), the site has been classified as **Class H1**, with an assessed characteristic surface movement (y_s) of between 40mm and 60mm.

According to the Building Code of Australia (BCA), the above classification is only applicable for Class 1 to 10a building types. For other building types/loads, this classification should only be used as a guide. It is recommended that precautions be taken to control moisture variations within the founding soils given the variable reactivity of subsurface soils, as follows:

- Restrict tree planting in the vicinity of the building. AS2870-2011 advises that trees be planted no closer
 to the building than a distance equal to 1.0 times their mature height on Class H1 sites. This distance
 should be increased where rows or groups of trees are involved.
- Provide paving to the edge of the building to limit soil moisture variations due to seasonal wetting and drying. The paved surface should be graded away from the building such that run-off drains away, and water cannot pond against the building.
- Service trenches, particularly plumbing and drainage, should be avoided beneath buildings. Where
 service trenches are to pass beneath or close to the building, they should be backfilled with a low
 permeability material, such as compacted clay, to prevent the ingress of water. The use of porous backfill
 materials should be avoided.
- Any leaking or damaged underground services should be repaired promptly.
- During construction, footing excavations should not be left exposed to the weather for extended periods.
 Water should not be allowed to pond in these areas, nor should it be left unprotected to dry and crack in the sun.

6.2 FOOTING DESIGN

The use of shallow / spread footings suitably embedded within the controlled fill or naturally occurring soils is considered suitable for this site. Footings shall be proportioned to an allowable bearing pressure of 100kPa, under stiff/medium dense and dry to damp conditions (or better).

It should be noted that construction during wet/winter periods may experience a reduced bearing pressure, particularly if left exposed for periods of time. Where required, a reassessment of the applicable bearing pressures may be undertaken. Footings should not be founded within any fill, unless the fill has been placed as controlled fill in accordance with AS3798 (2007) 'Guidelines for Earthworks on Residential and Commercial Developments' if applicable.

7. GENERAL RECOMMENDATIONS

7.1 FOOTINGS

- It is recommended that all footing excavations be inspected by a geotechnical engineer from this office to confirm that the founding conditions are consistent with design recommendations. The footing size and the founding level may need to be adjusted if the required founding material is not encountered at the design founding level.
- To reduce soil moisture variations near the footings, the builder should compact clean soil (without rubble or organic matter) around the footings to reduce potential water ingress around the footings.
- To reduce, but not eliminate, the possibility of damage to the footing, tree planting should be restricted as indicated earlier in this report.
- Good drainage is important to footing performance. The Builder should prevent water accumulation near the
 building footings (even during construction). It is recommended that sufficient ground clearance be created to
 accommodate paving which slopes a minimum of 1:20 away from the building. This slope should be achieved
 by excavation and not by building up loose fill around the footings.
- The roof water should be diverted away from the footing as soon as the roof is constructed by using temporary
 pipes, if necessary. The surface water should also be provided by constructing surface gutters or grading the
 surface to divert the water away from the footing.
- During wet conditions, machinery traffic may disturb the subgrade soils and should be avoided in the area of the building
- Any proposed footings which are close to an easement, underground service trenches, and/or other
 excavations, (including those in adjoining properties) should be founded below a line projected up at 45° to the
 horizontal (for firm/stiff Clay) and measured from the nearest base of the easement excavations.
- Avoid excavations close to footings since those founded on sandy soils can experience settlements while those founded in clayey soils can also move due to the shrinking and swelling of the clay. Plumbers and drainers should follow all the recommendations made in AS 2870-2011 and other appropriate codes with respect to drainage works.
- Protection of the footing system from moisture ingress or moisture loss after construction is the responsibility of the homeowner.

7.2 DRAINAGE DESIGN REQUIREMENTS (AS2870-2011)

- It should be noted that the building and site drainage design, as well as height of the floor level above the finished ground level, may be affected by factors other than structural design requirements, such as below:
 - Run-off water and influence of local topography;
 - Possibility of flooding;
 - Effects of existing and post-construction landscaping;
 - Level of the legal point of stormwater discharge;
 - Plumbing and drainage requirements;
 - Minimum height from finished ground level to the damp-proof course level;
 - Termite management.

- Surface drainage shall be designed and constructed to avoid water ponding against or near the footing. The ground in the immediate vicinity of the perimeter footing, including the ground uphill from the slab on cut and fill sites shall be graded to fall 50mm minimum away from the footing over 1m and shaped to prevent ponding of water. Where the filling is placed adjacent to the building, the filling shall be compacted and graded to ensure drainage of water away from the building. The requirements of Clause 5.2.2 of AS2870 (2011) shall be applied to reduce the possibility of surface water entering living areas. Alternative drainage systems will be required on zero lot line construction. Any paving shall also be suitably sloped.
- The site classification as stated in this report shall be stated on any construction drawings. The selected footing system and any required site work and required site drainage shall be documented.

7.3 SUBGRADE PREPARATION

- The subgrade should be stripped of all topsoil and soils containing significant organic matter.
- The exposed subgrade surface should be presented in a suitably moist condition and test rolled with several
 passes of an 8-10 tonne smooth drum roller. Any soft spots identified during test rolling should be removed by
 excavation and replaced with well-compacted suitable fill.
- Under no circumstances should any additional fill contain a significant amount of organic matter or be a mixture
 of greatly different particle sizes; e.g. it should not be a mixture of rock and soil, although less than 10% rock
 may be permitted.
- It is important that any fill be compacted close to its optimum moisture content during compaction.
- The compaction method and equipment should suit the fill material used and its degree of compaction should be tested and/or inspected by a suitably accredited NATA laboratory to meet the requirements of AS 3798-2007 "Guidelines on Earthworks for Commercial and Residential Developments".

8. DISCLOSURE

This document is detailed for the sole use of the intended recipient(s) or its authorized representatives. Distribution of this report may be carried out at the Clients discretion and must be reproduced in full. Should you have any questions related to this report please do not hesitate to contact this office.

9. LIMITATIONS

The advice provided in this document (as per our commission) is not designed or capable of identifying all soil conditions, (which can vary with products chosen). The advice given in this document is based on the assumption that the test results are representative of the overall soil conditions. However, it should be noted that actual conditions in some parts of the site might differ from those found. If further sampling/ testing reveals soil characteristics significantly different from those shown in our findings, Ground Science must be consulted.

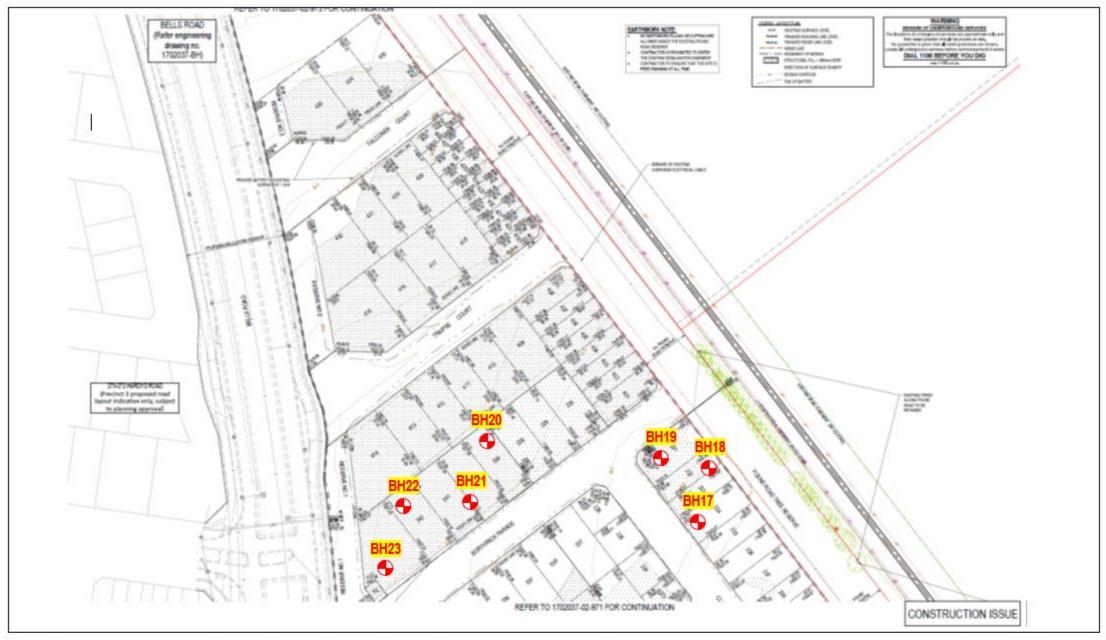
The scope and the period of Ground Science services are described in the document and are subject to restrictions and limitations. Ground Science did not perform a complete assessment of all possible conditions or circumstances that may exist. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Ground Science in regards to it.

Where data has been supplied by the client or a third party, it is assumed that the information is correct unless otherwise stated. No responsibility is accepted by Ground Science for incomplete or inaccurate data supplied by others.

It is recognized that the passage of time affects the information and assessment provided in this document. Ground Science's assessment is based on information that existed at the time of the preparation of this document. It is understood that the services provided allowed Ground Science to form no more than an opinion of the actual site conditions observed during sampling and observations of the site visit and cannot be used to assess the effects of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

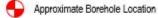
Any drawings or figures presented in this report should be considered only as pictorial evidence of our work. Therefore, unless otherwise stated, any dimensions should not be used for accurate calculations or dimensioning.

This document is COPYRIGHT- all rights reserved. No part of this document may be reproduced or copied in any form or by means without written permission by Ground Science Pty Ltd. All other property in this submission shall not pass until all preparation fees have been settled. This submission is for the use only of the party to whom it is addressed and for no other purpose. No responsibility is accepted to any third party who may use or rely on the whole or any part of the content of this submission. No responsibility will be taken for this report if it is altered in any way, or not reproduced in full. This document remains the property of Ground Science Pty Ltd until all fees and monies have been paid in full.



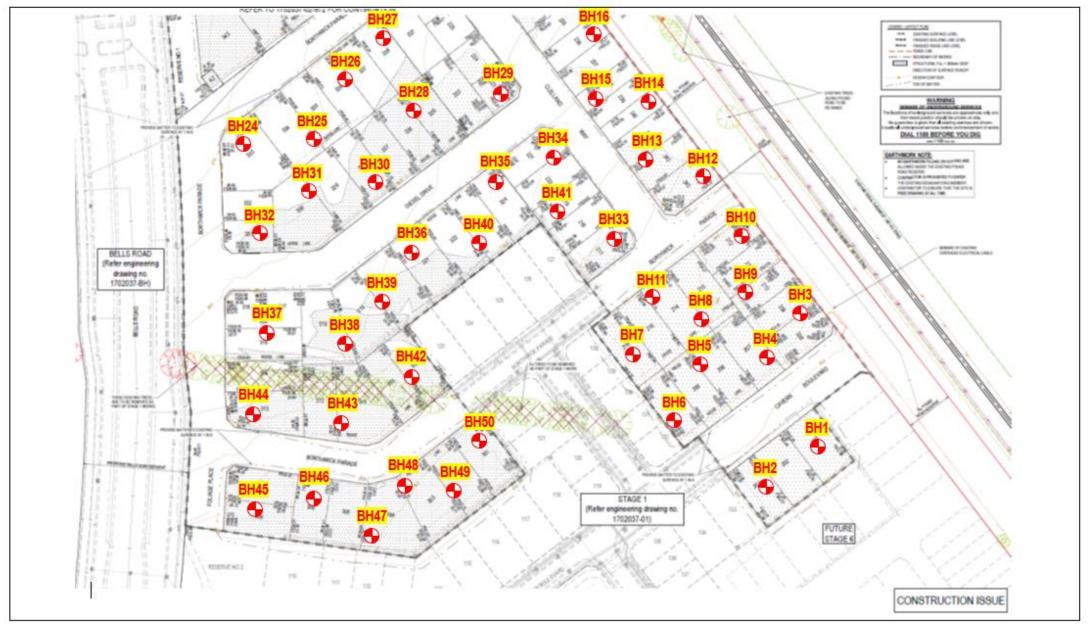
10. REFERENCES

- Geological Survey of Victoria, Geological Map Sheets.
- AS2870 2011 Residential Slabs and Footings.
- AS3798 2007 Guidelines on Earthworks for Residential and Commercial Developments.
- AS1289 Testing of Soils for Engineering Purposes.
- AS1726 2017 Geotechnical Site Investigations.
- Ground Science, GS5860.2 AA 19 April 2022, Level 1 Inspection & Testing, Five Farms Stage 2.
- Ground Science, GS5860.3 AA 19 April 2022, Level 1 Inspection & Testing, Five Farms Stage 3.


APPENDIX A

Site & Test Location Plans

Rev	9	Drawn	Date	Checked	Scale	
				3		
0	Figure 1 of 2: Borehole Locations	cc	14.04.22	GS	NTS	


Legend

STAGE 2 & 3 BOREHOLE LOCATIONS FIVE FARMS ESTATE, CLYDE NORTH

> Prepared For: Frasers Property Australia Job No: G4589.2 & G4589.3

Rev		Drawn	Date	Checked	Scale	1
					5	0
					56 95	571
0	Figure 2 of 2: Proposed Boreholes	CC	14.04.22	GS	NTS	38

Legend

STAGE 2 & 3 BOREHOLE LOCATIONS FIVE FARMS ESTATE, CLYDE NORTH

Prepared For: Frasers Property Australia

Job No: G4589.2 & G4589.3

APPENDIX B

Engineering Borehole Logs

U			Gro	undS	cier	ıce)	ENGINEERING BOREHOLE LOG	Borehole		BH45	
CLIENT: PROJECT: LOCATION: TEST LOCATIO		F C	ive Farms E Clyde North Refer to site	erty Group Pty Ltd state Site Classific olan, Appendix A	ation - Staç	ge 2&3		FIGURE AN	TEST DA LOGGED CHECKE VANE SH	BY: DBY: HEAR:	13-Apr-22 NH GS N/A	
DRILL METHO HOLE DIAMET	ER:		GT10 Drill I 100mm					EASTING: ND NORTHING: ND	INCLINA' SURFAC		90° ND	
PENERTRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH (RL)	SAMPLE OR FIELD FEST	RECOVERED	GRAPHIC LOG	JSC SYMBOL	FIELD MATERIAL DESCRIPTION SOIL / ROCK MATERIAL DESCRIPTION	CONSISTENCY	MOISTURE	ADDITIONAL OBSERVATIONS	
1 2 3 4	>	0.0	٥	Ø E	~	© 888		FILL: silty SAND, fine to coarse grained, angular to subangular, brown, low plasticity silt, trace rootlets	MD - D	•	Controlled Fill	
			0.20				CI-CH	FILL: sitly CLAY, medium to high plasticity, brown mottled grey, with sand and gravel, trace brick fragments	St - VS	t w > PL		
		0.5	0.50				СН	silty CLAY, high plasticity, brown mottled grey, trace sand	VSt	w≈PL	Inferred Red Bluff Sandstone Residual Soil	- - - - -
		1.0	1.00					brown-orange motiled grey and red				-
	Not Encountered	2.0	2.00					Borehole Terminated @ 2m				- - - -
		2.5										
		3.0										- - - - -
no resi	1 2	ref	usal	VS S F St VSt H	Soft Firm Stiff	Stiff		DENSITY MOISTURE CONDITION TEST NOTES Fb Friable D Dry PP Pocket Penetr VL Very Loose M Moist U50 Undisturbed S L Loose W Vet U63 Undisturbed S MD Medium Dense w < PL Moist, dry of plastic limit	ample 50mi ample 63mi nple sample ane test	m m	▼ Groundwater Level UTP Unable to Penetrate Sheet 1 of 1	

U			Gro	undS	cien	ce	•	ENGINEERING BOREHOLE LOG	Borehole		BH46 G4589.283	
CLIENT: PROJECT: LOCATION: TEST LOCATIO		F C	ive Farms E Clyde North Refer to site	erty Group Pty Ltd state Site Classifica olan, Appendix A	ation - Stag	je 2&3			TEST DA LOGGED CHECKE VANE SH	BY: D BY: EAR:	13-Apr-22 NH GS N/A	
DRILL METHO HOLE DIAMET	ER:		GT10 Drill I 100mm					EASTING: ND NORTHING: ND	INCLINAT SURFAC		90° ND	
2 PENERTRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH (RL)	SAMPLE OR FIELD SST TEST	RECOVERED	GRAPHIC LOG	JSC SYMBOL	FIELD MATERIAL DESCRIPTION SOIL / ROCK MATERIAL DESCRIPTION	CONSISTENCY DENSITY	MOISTURE	ADDITIONAL OBSERVATIONS	
1 2 3 4	W	0.0		Ø F	2	· ************************************	SM	FilL: sity SAND, fine to coarse grained, angular to subangular, brown, low plasticity sitt	MD - D	D-M		
		0.5	0.30				CI-CH	FILL: silly CLAY, medium to high plasticity, brown mottled grey, with sand and gravel, trace brick fragments	St - VS	t w > PL		
		1.0	0.70	S14	U63		СН	silty CLAY, high plasticity, brown mottled grey, trace sand	VSt	w≈Pl	Inferred Red Bluff Sandstone Residual Soil	
		·	1.40					brown-orange motified grey and red				
	Not Encountered	1.5										
		2.0	2.00					Borehole Terminated @ 2m				-
		2.5										
		11111										
		3.0										
		3.5										
no resi	1 2		usal	VS S F St VSt H	Soft Firm Stiff	Stiff		DENSITY MOISTURE CONDITION TEST NOTES Fib Friable D Dry PP Pocket Penet VL Very Loose M Moist U50 Undisturbed S L Loose W Wet U63 Undisturbed S MD Medium Dense w < PL Moist, dry of plastic limit	ample 50mr ample 63mr nple I sample ane test	n n	Groundwater Level UTP Unable to Penetrate Sheet 1 of 1	

•			Gro	undS	cien	ce	•	ENGINEERING BOREHOLE LOG	Borehole		BH47 G4589.2&3	
CLIENT: PROJECT: LOCATION: TEST LOCATIO		Fi C R	ve Farms E lyde North efer to site p	erty Group Pty Ltd state Site Classific olan, Appendix A	ation - Staç	e 2&3			TEST DA LOGGED CHECKE VANE SH	BY: DBY: HEAR:	13-Apr-22 NH GS N/A	
DRILL METHO HOLE DIAMET	ER:		GT10 Drill F 100mm					EASTING: ND NORTHING: ND	SURFAC		90° ND	
2 PENERTRATION 8 RESISTANCE	WATER	DEPTH (metres)	DEPTH (RL)	SAMPLE OR FIELD SAMPLE OR FIEL	RECOVERED	GRAPHIC LOG	USC SYMBOL	FIELD MATERIAL DESCRIPTION SOIL / ROCK MATERIAL DESCRIPTION	CONSISTENCY DENSITY	MOISTURE	ADDITIONAL OBSERVATIONS	
		0.0	0.30	3.				FILL: silty SAND, fine to coarse grained, angular to subangular, brown, low plasticity silt, trace rootlets FILL: silty CLAY, medium to high plasticity, brown mottled grey, with sand and gravel, trace brick fragments	MD - D	D-M		
		0.5	0.60			**************************************	СН	silty CLAY, high plasticity, brown-orange mottled brown, red and white, trace sand	VSt	w ≈ Pl	L Inferred Red Bluff Sandstone Residual Soil	
		1.0										
		1.5	1.40					brown-orange mottled grey				
	Not Encountered											
		2.0	2.00					Borehole Terminated @ 2m				
		2.5										
		-										
		3.0										
		3.5										
PENETRATION no resi	1 2	refu	sal	CONSISTENCY Vs S F St VSt H	Soft Firm Stiff	Stiff		DENSITY MOISTURE CONDITION TEST NOTES Fb Friable D Dry PP Pocket Penetr VL Very Loose M Moist U50 Undisturbed S L Loose W Wet U63 Undisturbed S MD Medium Dense w < PL Moist, dry of plastic limit	ample 50mr ample 63mr ple sample ane test	m m	▼ Groundwater Level UTP Unable to Penetrate Sheet 1 of 1	

U			Gro	undS	cier	ice	•	ENGINEERING BOREHOLE LOG	Borehole		BH48 G4589.283	
CLIENT: PROJECT: LOCATION: TEST LOCATI		F C R	ive Farms E lyde North efer to site p	erty Group Pty Ltd state Site Classific olan, Appendix A	ation - Sta	ge 2&3			TEST DA LOGGED CHECKE VANE SH	BY: D BY: EAR:	13-Apr-22 NH GS N/A	
DRILL METHO HOLE DIAMET	ER:		GT10 Drill F 100mm					EASTING: ND NORTHING: ND	INCLINAT SURFAC		90° ND	
2 PENERTRATION S RESISTANCE	WATER	DEPTH (metres)	DEPTH (RL)	SAMPLE OR FIELD SAMPLE OR FIEL	RECOVERED	GRAPHIC LOG	JSC SYMBOL	FIELD MATERIAL DESCRIPTION SOIL / ROCK MATERIAL DESCRIPTION	CONSISTENCY DENSITY	MOISTURE	ADDITIONAL OBSERVATIONS	
1 2 3 4		0.0	0.30	8 F	<u> </u>		SM	FILL: silty SAND, fine to coarse grained, angular to subangular, brown, low plasticity silt, trace rootlets FILL: silty CLAY, medium to high plasticity, brown mottled grey and red, with sand and gravel, trace brick fragments	MD - D	D-M		-
		0.5	0.70					silty CLAY, high plasticity, brown mottled grey, trace sand	VSt	w≈Pl	Inferred Red Bluff Sandstone Residual Soil	
		1.0 -										
	Not Encountered	1.5	1.60					brown-orange motifed grey and red				
		2.0	2.00					Borehole Terminated @ 2m				
		2.5										
		3.0										
>[1 2	3.5 3 4 refu	isal	CONSISTENCY VS S F St VSt H	Soft Firm Stiff	Stiff		DENSITY MOISTURE CONDITION TEST NOTES Fb Friable D Dry PP Pocket Penetron Street Penetron Prize Process Proc	mple 50mr imple 63mr ble sample ne test	n n	▼ Groundwater Level UTP Unable to Penetrate	

			Gro	undSc	ien	ce	ļ	ENGINEERING BOREHOLE LOG	Borehole No		BH49 G4589 283	
CLIENT: PROJECT: LOCATION: TEST LOCATION:		Frasers Property Group Ply Ltd Five Farms Estate Site Classification - Stag Clyde North Refer to Site plan, Appendix A		e 2&3			TEST DATE: LOGGED BY: CHECKED BY: VANE SHEAR:		13-Apr-22 NH GS N/A			
DRILL METHO HOLE DIAMET	TER:		GT10 Drill F 100mm					EASTING: ND NORTHING: ND	INCLINAT SURFACE		90° ND	
	DRILL	ING		SAMPLIN	G			FIELD MATERIAL DESCRIPTION				
2 C PENERTRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH (RL)	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC SYMBOL	SOIL / ROCK MATERIAL DESCRIPTION	CONSISTENCY DENSITY	MOISTURE	ADDITIONAL OBSERVATION	S
		0.0				***	SM	FILL: silty SAND, fine to coarse grained, angular to subangular, brown, low plasticity silt	MD - D	D-M	Controlled Fill	T -
		3]
		-				***						1-
		-	0.30			888	CI-CH	FILL: silty CLAY, medium to high plasticity, brown mottled grey and red, with sand and gravel, trace brick fragments	St - VSt	w > PL	-	-
		0.5				***						L
		J.5										=
		=										=
		_				***						=
		=				***						-
		1.0				***						-
		3				***						13
		_	1.20			***		dark grey mottled brown				_
		-				***						-
		-										-
		1.5				***						-
	pe	-	1.60				СН	silty CLAY, high plasticity, brown-orange mottled grey and red, trace sand	VSt	w≈Pl	Inferred Red Bluff Sandstone Residual Soil	T =
	Not Encountered	-										-
	lot Enc	-										-
												_
		2.0	2.00					Borehole Terminated @ 2m				
		_										-
		_										-
		4										-
		2.5										1_
		2.0										-
		=										=
		=										-
		=										=
		3.0										-
		-										=
		1										-
		\exists										-
		1										-
		3.5				Ш						
PENETRATIO	N			CONSISTENCY	Very	Soft		DENSITY MOISTURE CONDITION TEST NOTES Fb Friable D Dry PP Pocket Penetron	ometer Test		<u>▼</u> Groundwater Level	
	1 2	3 4		S	Soft			VL Very Loose M Moist U50 Undisturbed S	Sample 50mn	n	UTP Unable to Penetrate	
	no resistence			F St	Firm Stiff			L Loose W Wet U63 Undisturbed \$ MD Medium Dense w < PL Moist, dry of plastic limit		n		
no res				VSt H	Very Hard			D Dense w≈ PL Moist, near plastic limit Bs Bulk Sample VD Very Dense w> PL Moist, wet of plastic limit E Environmenta				
refusal H Hard				nard			w ≈ LL Wet, near liquid limit HSV Hand Shear \	ane test				
HAM_								w > LL Wet, wet of liquid limit Cu Undrained Sh	ear Strength		Sheet 1 of	

4			Gro	undSc	ien	ce		ENGINEERING BOREHOLE LOG	Borehole JOB No :		BH50 G4589.283			
CLIENT: PROJECT: LOCATION: TEST LOCATION: DRILL METHOD:		Fiv Cly ON: Re		Frasers Property Group Pty Five Farms Estate Site Class Clyde North Refer to site plan, Appendix GT10 Drill Rig		state Site Classificat	ion - Stag	je 2&3		EASTING: ND	TEST DA' LOGGED CHECKEI VANE SH	BY: D BY: EAR:	13-Apr-22 NH GS N/A 90°	
HOLE DIAME	TER:	1	110 Drill F 100mm					NORTHING: ND	INCLINAT SURFACE		ND			
C PENERTRATION C RESISTANCE	DRILL MATER	DEPTH (metres)	DEPTH (RL)	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC SYMBOL	FIELD MATERIAL DESCRIPTION SOIL / ROCK MATERIAL DESCRIPTION	CONSISTENCY DENSITY	MOISTURE	ADDITIONAL OBSERVATION	48		
		0.0	0.30	57.2			SM CI-CH	FILL: silty SAND, fine to coarse grained, angular to subangular, brown, low plasticity silt, trace rootlets FILL: silty CLAY, medium to high plasticity, brown mottled grey and red, with sand and gravel, trace brick fragments brown mottled grey	MD - D	D-M				
	Not Encountered	1.5	1.20	S15	U63		CH	silty CLAY, high plasticity, brown-orange motified grey and red, trace sand	VSt	w≈PI	Inferred Red Bluff Sandstone Residu Soil	31		
PENETRATIC		2.5	2.00	CONSISTENCY				DENSITY MOISTURE CONDITION TEST NOTES						
CONSISTENCY Vs				Soft Firm Stiff Very	Stiff		Fb Friable D Dry PP Pocket Pene VL Very Loose M Moist U50 Undisturbed L Loose W Wet U63 Undisturbed MD Medium Dense w < PL Moist, dry of plastic limit	al sample	n n	Groundwater Level UTP Unable to Penetrate Sheet 1 o.				

HAM_LOG_6.0 2019

APPENDIX C

Laboratory Test Reports

Material Test Report

Report Number: G4589.2-1

Issue Number:

Date Issued: 02/05/2022

Client: Frasers Property Australia c/- Beveridge Williams

1 Glenferrie Road, Malvern VIC 3144

Project Number: G4589.2

Project Name: Five Farms Residential Development - Stage 2/3

Project Location: Clyde North Work Request: 8075

Report Number: G4589.2-1

Dates Tested: 14/04/2022 - 26/04/2022

Ground Science Pty Ltd Ground Science Laboratory

13 Brock Street Thomastown Victoria 3074

Phone: (03) 9464 4617

Email: pelin@groundscience.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Pelin Erden gs-pelin

NATA Accredited Laboratory Number: 15055

Shrink Swell Index AS 1289 7.1.1 & 2.1.1					
Sample Number	4589.2-S1	4589.2-S2	4589.2-S3	4589.2-S5	4589.2-S6
Date Sampled	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022
Date Tested	19/04/2022	19/04/2022	19/04/2022	19/04/2022	20/04/2022
Material Source	**	**	**	**	**
Sample Location	BH1 (1.0 - 1.3m)	BH6 (0.8 - 1.0m)	BH10 (1.5 - 1.8m)	BH16 (0.6 - 0.9m)	BH19 (1.5 - 1.7m)
Inert Material Estimate (%)	0	10	5	5	0
Pocket Penetrometer before (kPa)	250	150	260	150	250
Pocket Penetrometer after (kPa)	135	80	200	100	125
Shrinkage Moisture Content (%)	31.7	17.6	18.1	15.9	18.6
Shrinkage (%)	6.3	0.9	1.9	1.6	2.5
Swell Moisture Content Before (%)	29.1	18.5	20.0	13.0	17.6
Swell Moisture Content After (%)	35.7	23.8	25.2	19.6	18.7
Swell (%)	1.1	-0.1	1.9	-0.0	0.9
Shrink Swell Index Iss (%)	3.8	0.5	1.6	0.9	1.6
Visual Description	silty CLAY, medium to high plasticity, mottled brown, grey	silty CLAY, low plasticity, mottled brown, grey, trace gravel, trace sand	Silty CLAY, medium to high plasticity, mottled brown, grey, trace gravel, trace sand	Sandy CLAY, low plasticity, brown, trace gravel	silty CLAY, medium plasticity, mottled brown, grey, orange, trace sand
Cracking	SC	MC	SC	MC	SC
Crumbling	No	No	No	No	No
Remarks	**	**	**	**	**

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.

Material Test Report

Report Number: G4589.2-1

Issue Number:

Date Issued: 02/05/2022

Client: Frasers Property Australia c/- Beveridge Williams

1 Glenferrie Road, Malvern VIC 3144

Project Number: G4589.2

Project Name: Five Farms Residential Development - Stage 2/3

Project Location: Clyde North Work Request: 8075

Report Number: G4589.2-1

Dates Tested: 14/04/2022 - 26/04/2022

Ground Science Pty Ltd Ground Science Laboratory

13 Brock Street Thomastown Victoria 3074 Phone: (03) 9464 4617

Email: pelin@groundscience.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Pelin Erden gs-pelin

NATA Accredited Laboratory Number: 15055

Shrink Swell Index AS 1289 7.1.1 & 2.1.1					
Sample Number	4589.2-S7	4589.2-S8	4589.2-S10	4589.2-S12	4589.2-S13
Date Sampled	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022
Date Tested	20/04/2022	20/04/2022	20/04/2022	21/04/2022	21/04/2022
Material Source	**	**	**	**	**
Sample Location	BH22 (1.0 - 1.3m)	BH26 (0.5 - 0.8m)	BH32 (1.5 - 1.7m)	BH41 (0.5 - 0.8m)	BH44 (1.5 - 1.7m)
Inert Material Estimate (%)	0	5	5	0	0
Pocket Penetrometer before (kPa)	200	200	300+	150	300+
Pocket Penetrometer after (kPa)	150	150	125	100	150
Shrinkage Moisture Content (%)	23.4	22.2	22.3	18.7	24.9
Shrinkage (%)	6.2	2.3	4.4	1.2	4.1
Swell Moisture Content Before (%)	23.0	24.2	19.8	16.7	25.6
Swell Moisture Content After (%)	22.2	28.1	23.6	25.9	29.7
Swell (%)	0.3	0.2	1.4	0.1	2.4
Shrink Swell Index Iss (%)	3.5	1.3	2.8	0.7	2.9
Visual Description	Silty CLAY, low to medium plasticity, mottled brown, grey, orange, trace sand	silty CLAY, low to medium plasticity, mottled brown, grey, orange, trace gravel, trace sand	silty CLAY, medium plasticity, mottled grey, orange, red, trace gravel, trace sand	sandy CLAY, low plasticity, brown	Silty CLAY, medium to high plasticity, mottled brown, grey, orange, trace sand
Cracking	SC	SC	SC	HC	SC
Crumbling	No	No	No	No	No
Remarks	**	**	**	**	**

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.

Material Test Report

Report Number: G4589.2-1

Issue Number:

Date Issued: 02/05/2022

Client: Frasers Property Australia c/- Beveridge Williams

1 Glenferrie Road, Malvern VIC 3144

Project Number: G4589.2

Project Name: Five Farms Residential Development - Stage 2/3

Project Location: Clyde North Work Request: 8075

Report Number: G4589.2-1

Dates Tested: 14/04/2022 - 26/04/2022

Ground Science Pty Ltd Ground Science Laboratory 13 Brock Street Thomastown Victoria 3074

Phone: (03) 9464 4617

Email: pelin@groundscience.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Pelin Erden gs-pelin

NATA Accredited Laboratory Number: 15055

Shrink Swell Index AS 1289 7.1.1 & 2.1.1				
Sample Number	4589.2-S14	4589.2-S15		
Date Sampled	14/04/2022	14/04/2022		
Date Tested	26/04/2022	26/04/2022		
Material Source	**	**		
Sample Location	BH46 (0.7 - 1.0m)	BH50 (1.2 - 1.5m)		
Inert Material Estimate (%)	10	5		
Pocket Penetrometer before (kPa)	120	160		
Pocket Penetrometer after (kPa)	110	150		
Shrinkage Moisture Content (%)	16.8	15.9		
Shrinkage (%)	0.8	2.1		
Swell Moisture Content Before (%)	15.3	15.0		
Swell Moisture Content After (%)	19.9	23.8		
Swell (%)	-0.1	0.4		
Shrink Swell Index Iss (%)	0.4	1.3		
Visual Description	silty CLAY, medium plasticity, brown, trace gravel, with sand	silty CLAY, medium plasticity, mottled brown, grey, orange, trace gravel, with sand		
Cracking	SC	SC		
Crumbling	No	**		
Remarks	**	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.