ABN 31 105 704 078 13 Brock Street, Thomastown Victoria 3074 (P) +61 3 9464 4617 (F) +61 3 9464 4618

GEOTECHNICAL SITE CLASSIFICATION LOT 342 FIVE FARMS ESTATE STAGE 3, CLYDE NORTH

Prepared for Frasers Property Australia c/- Beveridge Williams Pty Ltd

Report Reference: G4589.3

Date: 17 May 2022

ABN 31 105 704 078 13 Brock Street, Thomastown Victoria 3074 (P) +61 3 9464 4617 (F) +61 3 9464 4618

PROJECT DETAILS

Project Reference	G4589.3	Rev	BP			
Project Title	Five Farms Estate Stage 3					
Project Location	Clyde North	State	VIC			
Date	17 May 2022					

CLIENT DETAILS

Prepared For (Client)	Frasers Property Australia		
Prepared For (Facilitator)	Beveridge Williams Pty Ltd		
Client Address	Level 9, 484 St Kilda Road	Suburb	Melbourne

DISTRIBUTION

Original Held By	Ground Science Pty Ltd
One (1) Electronic Copy	Frasers Property Australia
One (1) Electronic Copy	Beveridge Williams Pty Ltd

This document presents the results of the site classification conducted for the aforementioned project and is detailed for the sole use of the intended recipient. Should you have any questions related to this report please do not hesitate to contact the undersigned.

Author:

Gee Singh, MIEAust (NER) Senior Geotechnical Engineer

Table of Contents

1.	I	NTRODUCTION 1
2.	F	PROJECT BACKGROUND 1
3.	F	PROJECT AIMS 1
4.	S	SCOPE OF WORKS 1
5.	F	RESULTS
ę	5.1	REGIONAL GEOLOGICAL CONDITIONS
ę	5.2	SURFACE CONDITIONS
Ę	5.3	SUBSURFACE CONDITIONS
Ę	5.4	GROUNDWATER
Ę	5.5	LABORATORY TESTING
6.	[DISCUSSION & RECOMMENDATIONS
(6.1	AS2870-2011 SITE CLASSIFICATION
(6.2	FOOTING DESIGN
7.	(GENERAL RECOMMENDATIONS
7	7.1	FOOTINGS
7	7.2	DRAINAGE DESIGN REQUIREMENTS (AS2870-2011)4
7	7.3	SUBGRADE PREPARATION
8.	[DISCLOSURE
9.	L	_IMITATIONS
10.	F	REFERENCES

TABLES

TABLE 1: LABORATORY TEST RESULTS SUMMARY	2
TABLE 2: SITE CHARACTERISTICS	4

APPENDICES

APPENDIX A	SITE LAYOUT PLANS
APPENDIX B	BOREHOLE LOG SHEETS
APPENDIX C	LABORATORY RESULTS

1. INTRODUCTION

This report presents the results of the geotechnical site classification investigation carried out by Ground Science for the Five Farms Estate, Stage 3 located in Clyde North, Victoria (the site). This report presents the results for:

• Lot 342

The scope of works detailed herein was commissioned by Beveridge Williams Pty Ltd (facilitator) on behalf of Frasers Property Australia (Principal).

2. PROJECT BACKGROUND

The Five Farms residential development included the construction of building platforms as part of the bulk earthworks phase of the project, which primarily involved the placement of controlled fill and site cuts. Controlled fill was placed and compacted to Level 1 procedures in general accordance with AS3798 (2007) 'Guidelines on Earthworks for Residential and Commercial Developments'. Ground Science were the nominated Geotechnical Inspection and Testing Authority for the Level 1 filling works carried out within this stage (report reference: GS5860.2 AA dated 19th April 2022).

The professional advice provided in this report is based on the information provided at the time of the report preparation and may not be valid if changes are made to the site, the development proposal, or the construction methods. In the event of such changes, further advice should be sought from Ground Science.

3. PROJECT AIMS

The aims of the investigation were as follows:

- To assess the subsurface conditions at the site relevant to the proposed development through a desktop regional geological study.
- To recover soil samples for laboratory analysis.
- To log the soils as per the guidelines presented in AS1726 (2017) 'Geotechnical Site Investigations'.
- To classify the site in accordance with AS2870 (2011) 'Residential Slabs and Footings'.
- To calculate the characteristic surface movement (Y_S) for the site.
- To provide advice on allowable bearing pressures and geotechnical parameters for the design of footing systems.
- To provide general construction advice.

4. SCOPE OF WORKS

The site classification investigation for Stages 2 & 3 was carried out simultaneously. The scope of works involved the drilling of 50 boreholes (BH1 – BH50) spatially distributed across the allotments using a truck mounted (GT10) drilling rig supplied and operated by Ground Science. The soils were logged and hand classified using visual tactile methods (AS1726) by a qualified geotechnical engineer from this office. Representative soil samples were recovered from the controlled fill & residual soil deposits for a total of 12 Shrink/Swell Index (I_{SS}) tests. Laboratory testing was carried out in Ground Science's NATA accredited testing facility in Thomastown, Victoria.

Borehole locations are shown on the site plan in **Appendix A**. Engineering borehole log sheets for this allotment and surrounding allotments are presented in **Appendix B**. Laboratory test reports are presented in **Appendix C**.

5. RESULTS

5.1 REGIONAL GEOLOGICAL CONDITIONS

The Geological Survey of Victoria map sheets indicate the site is underlain by Miocene to Pliocene aged 'Red Bluff Sandstone' deposits, with Pleistocene to Holocene aged alluvial deposits indicated towards exist to the west and south/west. This assessment excludes controlled (engineered) fill noted to have been placed on the allotments, however the controlled fill materials are noted to have been generally derived from blending onsite soils or imported fill materials from local source sites of relatively similar geological characteristics.

5.2 SURFACE CONDITIONS

The site is located west of Pound Road and southeast of the Hardys Road / future Bells Road intersection. At the time of our investigation, the site was observed to be generally flat with fair drainage conditions noted. The surface of the allotments was dry and generally comprised barren soil. The site was generally trafficable to a 4WD mounted drilling rig. No trees were observed to be located within close proximity to the building envelopes.

5.3 SUBSURFACE CONDITIONS

The subsurface soil profile encountered during the field investigation is considered to be generally consistent with our expectations of the site. The subsurface soils generally comprised **controlled (engineered) fill** recovered as Sandy CLAY, Silty CLAY or Silty/Clayey SAND overlying **naturally occurring** inferred 'Red Bluff Sandstone' residual soils comprising Silty/Sandy CLAY. The controlled fill and residual soil deposits were generally medium dense to dense, stiff to very stiff, and moisture close to the plastic limit.

5.4 GROUNDWATER

Groundwater was not encountered during the borehole drilling. The Visualising Victoria's Groundwater dataset indicates the regional groundwater table is less than 5.0mbgl. During wet seasons or following torrential rainfalls, there is a possibility for a perched water table to develop in the area. This should be carefully considered during the construction stage, especially when footing excavations are left exposed or prior to topsoil application.

5.5 LABORATORY TESTING

A summary of the laboratory test results are presented in Table 1:

Sample #	Borehole	Depth (m)	Geological Origin	Shrink Swell Index Iss (%)
S1	BH1	1.0 – 1.3	Residual Soils	3.8
S2	BH6	0.8 – 1.0	Controlled Fill	0.5
S3	BH10	1.5 – 1.8	Residual Soils	1.6
S5	BH16	0.6 – 0.9	Residual Soils	0.9
S6	BH19	1.5 – 1.7	Residual Soils	1.6
S7	BH22	1.0 – 1.3	Controlled Fill	3.5
S8	BH26	0.5 – 0.8	Controlled Fill	1.3
S10	BH32	1.5 – 1.7	Residual Soils	2.8
S12	BH41	0.5 – 0.8	Controlled Fill	0.7
S13	BH44	1.5 – 1.7	Residual Soils	2.9
S14	BH46	0.7 – 1.0	Residual Soils	0.4
S15	BH50	1.2 – 1.5	Residual Soils	1.3

Table 1: Laboratory Test Results Summary

6. DISCUSSION & RECOMMENDATIONS

6.1 AS2870-2011 SITE CLASSIFICATION

The site has been classified in general accordance with the guidelines presented in AS2870 (2011) 'Residential Slabs and Footings'. The following site characteristics were adopted in the site classification assessment:

Table 2: Site Characteristics

Climatic Zone	2 (Figure D1 of AS2870-2011)
Soil Profile Group	Group 3 (Table D1 of AS2870-2011)
Depth of Soil Suction Change (Hs)	1.8m

Based on the results of the geotechnical investigation, the geological setting and the guidelines presented in AS2870 (2011), the site has been classified as **Class H1**, with an assessed characteristic surface movement (y_s) of between 40mm and 60mm.

According to the Building Code of Australia (BCA), the above classification is only applicable for Class 1 to 10a building types. For other building types/loads, this classification should only be used as a guide. It is recommended that precautions be taken to control moisture variations within the founding soils given the variable reactivity of subsurface soils, as follows:

- Restrict tree planting in the vicinity of the building. AS2870-2011 advises that trees be planted no closer to the building than a distance equal to 1.0 times their mature height on Class H1 sites. This distance should be increased where rows or groups of trees are involved.
- Provide paving to the edge of the building to limit soil moisture variations due to seasonal wetting and drying. The paved surface should be graded away from the building such that run-off drains away, and water cannot pond against the building.
- Service trenches, particularly plumbing and drainage, should be avoided beneath buildings. Where service trenches are to pass beneath or close to the building, they should be backfilled with a low permeability material, such as compacted clay, to prevent the ingress of water. The use of porous backfill materials should be avoided.
- Any leaking or damaged underground services should be repaired promptly.
- During construction, footing excavations should not be left exposed to the weather for extended periods. Water should not be allowed to pond in these areas, nor should it be left unprotected to dry and crack in the sun.

6.2 FOOTING DESIGN

The use of shallow / spread footings suitably embedded within the controlled fill or naturally occurring soils is considered suitable for this site. Footings shall be proportioned to an allowable bearing pressure of 100kPa, under stiff/medium dense and dry to damp conditions (or better).

It should be noted that construction during wet/winter periods may experience a reduced bearing pressure, particularly if left exposed for periods of time. Where required, a reassessment of the applicable bearing pressures may be undertaken. Footings should not be founded within any fill, unless the fill has been placed as controlled fill in accordance with AS3798 (2007) 'Guidelines for Earthworks on Residential and Commercial Developments' if applicable.

7. GENERAL RECOMMENDATIONS

7.1 FOOTINGS

- It is recommended that all footing excavations be inspected by a geotechnical engineer from this office to confirm that the founding conditions are consistent with design recommendations. The footing size and the founding level may need to be adjusted if the required founding material is not encountered at the design founding level.
- To reduce soil moisture variations near the footings, the builder should compact clean soil (without rubble or organic matter) around the footings to reduce potential water ingress around the footings.
- To reduce, but not eliminate, the possibility of damage to the footing, tree planting should be restricted as indicated earlier in this report.
- Good drainage is important to footing performance. The Builder should prevent water accumulation near the building footings (even during construction). It is recommended that sufficient ground clearance be created to accommodate paving which slopes a minimum of 1:20 away from the building. This slope should be achieved by excavation and not by building up loose fill around the footings.
- The roof water should be diverted away from the footing as soon as the roof is constructed by using temporary pipes, if necessary. The surface water should also be provided by constructing surface gutters or grading the surface to divert the water away from the footing.
- During wet conditions, machinery traffic may disturb the subgrade soils and should be avoided in the area of the building
- Any proposed footings which are close to an easement, underground service trenches, and/or other excavations, (including those in adjoining properties) should be founded below a line projected up at 45° to the horizontal (for firm/stiff Clay) and measured from the nearest base of the easement excavations.
- Avoid excavations close to footings since those founded on sandy soils can experience settlements while those founded in clayey soils can also move due to the shrinking and swelling of the clay. Plumbers and drainers should follow all the recommendations made in AS 2870-2011 and other appropriate codes with respect to drainage works.
- Protection of the footing system from moisture ingress or moisture loss after construction is the responsibility of the homeowner.

7.2 DRAINAGE DESIGN REQUIREMENTS (AS2870-2011)

- It should be noted that the building and site drainage design, as well as height of the floor level above the finished ground level, may be affected by factors other than structural design requirements, such as below:
 - Run-off water and influence of local topography;
 - Possibility of flooding;
 - Effects of existing and post-construction landscaping;
 - Level of the legal point of stormwater discharge;
 - Plumbing and drainage requirements;
 - Minimum height from finished ground level to the damp-proof course level;
 - Termite management.

- Surface drainage shall be designed and constructed to avoid water ponding against or near the footing. The
 ground in the immediate vicinity of the perimeter footing, including the ground uphill from the slab on cut and fill
 sites shall be graded to fall 50mm minimum away from the footing over 1m and shaped to prevent ponding of
 water. Where the filling is placed adjacent to the building, the filling shall be compacted and graded to ensure
 drainage of water away from the building. The requirements of Clause 5.2.2 of AS2870 (2011) shall be applied
 to reduce the possibility of surface water entering living areas. Alternative drainage systems will be required on
 zero lot line construction. Any paving shall also be suitably sloped.
- The site classification as stated in this report shall be stated on any construction drawings. The selected footing system and any required site work and required site drainage shall be documented.

7.3 SUBGRADE PREPARATION

- The subgrade should be stripped of all topsoil and soils containing significant organic matter.
- The exposed subgrade surface should be presented in a suitably moist condition and test rolled with several passes of an 8-10 tonne smooth drum roller. Any soft spots identified during test rolling should be removed by excavation and replaced with well-compacted suitable fill.
- Under no circumstances should any additional fill contain a significant amount of organic matter or be a mixture
 of greatly different particle sizes; e.g. it should not be a mixture of rock and soil, although less than 10% rock
 may be permitted.
- It is important that any fill be compacted close to its optimum moisture content during compaction.
- The compaction method and equipment should suit the fill material used and its degree of compaction should be tested and/or inspected by a suitably accredited NATA laboratory to meet the requirements of AS 3798-2007 "Guidelines on Earthworks for Commercial and Residential Developments".

8. DISCLOSURE

This document is detailed for the sole use of the intended recipient(s) or its authorized representatives. Distribution of this report may be carried out at the Clients discretion and must be reproduced in full. Should you have any questions related to this report please do not hesitate to contact this office.

9. LIMITATIONS

The advice provided in this document (as per our commission) is not designed or capable of identifying all soil conditions, (which can vary with products chosen). The advice given in this document is based on the assumption that the test results are representative of the overall soil conditions. However, it should be noted that actual conditions in some parts of the site might differ from those found. If further sampling/ testing reveals soil characteristics significantly different from those shown in our findings, Ground Science must be consulted.

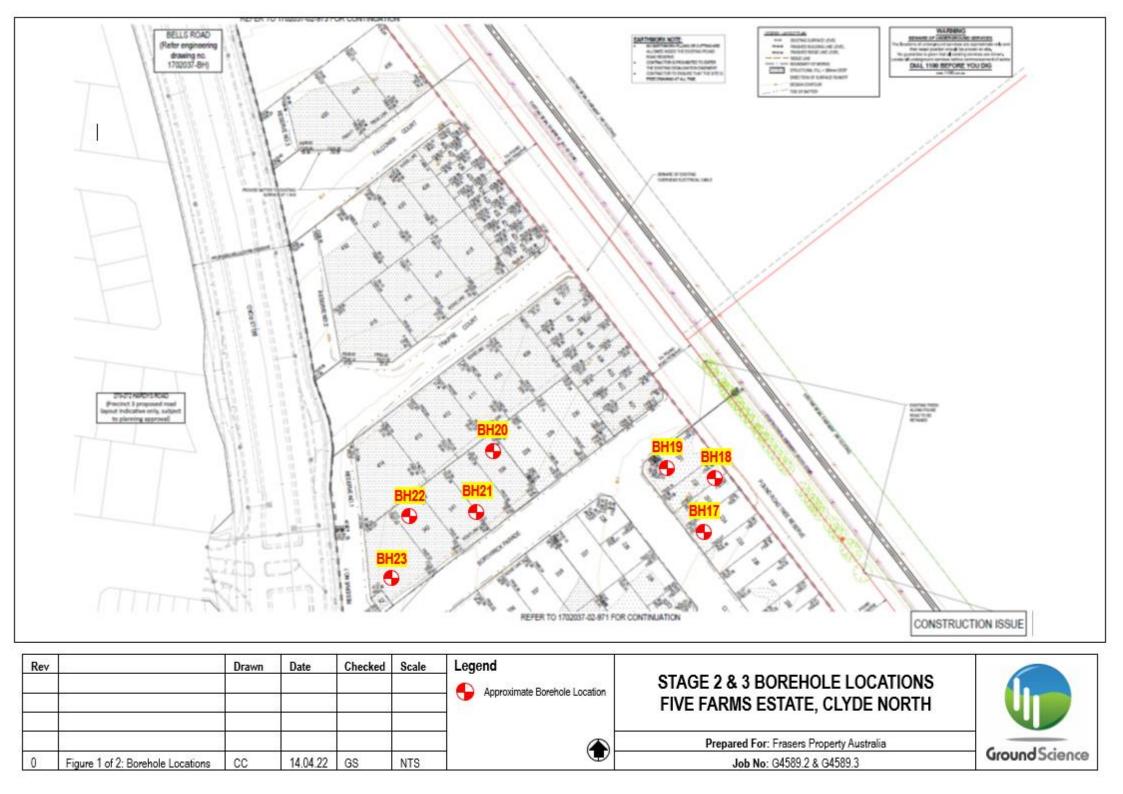
The scope and the period of Ground Science services are described in the document and are subject to restrictions and limitations. Ground Science did not perform a complete assessment of all possible conditions or circumstances that may exist. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Ground Science in regards to it.

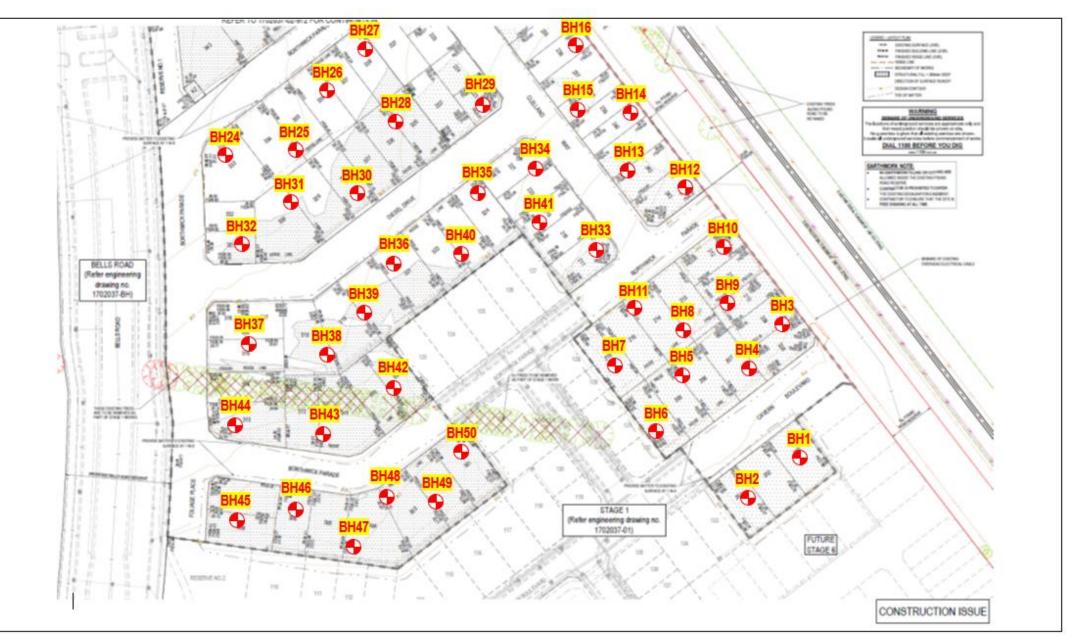
Where data has been supplied by the client or a third party, it is assumed that the information is correct unless otherwise stated. No responsibility is accepted by Ground Science for incomplete or inaccurate data supplied by others.

It is recognized that the passage of time affects the information and assessment provided in this document. Ground Science's assessment is based on information that existed at the time of the preparation of this document. It is understood that the services provided allowed Ground Science to form no more than an opinion of the actual site conditions observed during sampling and observations of the site visit and cannot be used to assess the effects of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any drawings or figures presented in this report should be considered only as pictorial evidence of our work. Therefore, unless otherwise stated, any dimensions should not be used for accurate calculations or dimensioning.

This document is COPYRIGHT- all rights reserved. No part of this document may be reproduced or copied in any form or by means without written permission by Ground Science Pty Ltd. All other property in this submission shall not pass until all preparation fees have been settled. This submission is for the use only of the party to whom it is addressed and for no other purpose. No responsibility is accepted to any third party who may use or rely on the whole or any part of the content of this submission. No responsibility will be taken for this report if it is altered in any way, or not reproduced in full. This document remains the property of Ground Science Pty Ltd until all fees and monies have been paid in full.




10. REFERENCES

- Geological Survey of Victoria, Geological Map Sheets.
- AS2870 2011 Residential Slabs and Footings.
- AS3798 2007 Guidelines on Earthworks for Residential and Commercial Developments.
- AS1289 Testing of Soils for Engineering Purposes.
- AS1726 2017 Geotechnical Site Investigations.
- Ground Science, GS5860.2 AA 19 April 2022, Level 1 Inspection & Testing, Five Farms Stage 2.
- Ground Science, GS5860.3 AA 19 April 2022, Level 1 Inspection & Testing, Five Farms Stage 3.

APPENDIX A

Site & Test Location Plans

Rev		Drawn	Date	Checked	Scale	Legend		
					3	Approximate Borehole Location	STAGE 2 & 3 BOREHOLE LOCATIONS	
							FIVE FARMS ESTATE, CLYDE NORTH	
					6	_		
							Prepared For: Frasers Property Australia	Course IC in a
0	Figure 2 of 2: Proposed Boreholes	CC	14.04.22	GS	NTS	U	Job No: G4589.2 & G4589.3	GroundScience

APPENDIX B

Engineering Borehole Logs

CLIENT: Frasers Property Group Pty Ltd TEST DATE: 12.4c PROJECT: Five Farms Estate Site Classification - Stage 2&3 LOGGED BY: NH LOCATION: Clyde North CHECKED BY: GS TEST LOCATION: Refer to site plan. Appendix A VANE SHEAR: NA DRILL INFHOD: G110 Drill Rig EASTING: ND INCLINATION: 90 HOLE DIAMETER: 100mm NORTHING: ND SURFACE RL: NE VANE SHEAR: 100mm SURFACE RL: NE NE VINUE DIAMETER: 100mm SURFACE RL: NE VINUE STRUCT GE GE GE GE VINUE STRUCT SOL/ROCK MATERIAL DESCRIPTION GE GE	6
LOCATION: Clyde North CHECKED BY: GS SS TEST LOCATION: Refer to site plan, Appendix A VANE SHEAR: NA NA DRILL METHOD: GT10 Dnil Rg EASTING: ND NICLINATION: 90 HOLE DIAMETER: 100mm NORTHING: ND SIUFAce RL: NE DRILLING SAMPLING FIELD MATERIAL DESCRIPTION VANE NE	s a 90° ND
DRILL METHOD: GT10 Dnl Rig EASTING: ND INCLINATION: 90 HOLE DIAMETER: 100mm NORTHING: ND SURFACE RL: NE DRILLING SAMPLING NO FIELD MATERIAL DESCRIPTION FIELD MATERIAL DESCRIPTION	90° ND
DRILLING SAMPLING FIELD MATERIAL DESCRIPTION	
NO LIVE LATERIAL DESCRIPTION	ADDITIONAL OBSERVATIONS
A MATER PENER MATER PENER MAT	
0.0 0.0 St - VSt W < PL	Controlled Fill
	=
	-
	-
	=
	Inferred Red Bluff Sandstone Residual
1.0 1.00 CH silly CLAY, high plasticity, brown mottled pale grey, red and brown-orange, trace sand VSt w ≈ PL	Soil –
	-
	-
Euroonttered	-
2.0 2.00 Borehole Terminated @ 2m	
	-
	-
	-
	-
	-
	-
3.0 _	-
	-
	-
	-
PENETRATION CONSISTENCY DENSITY MOISTURE CONDITION TEST NOTES 1 2	

J			Gro	undSci	ien	ce	ļ	ENGINEERING BOREHOLE	LOG	Borehole JOB No :		BH21 G4589.283	
CLIENT: PROJECT: LOCATION: TEST LOCAT		1	Five Farms E Clyde North Refer to site	perty Group Pty Ltd Estate Site Classification plan, Appendix A	on - Stage	283		EASTING: ND		TEST DA LOGGED CHECKEI VANE SH	BY: D BY: EAR:	12-Apr-22 NH GS NA	
DRILL METH	TER:		GT10 Drill 100mm			1		IORTHING: ND		INCLINAT SURFACI		90° ND	
	DRILL	ING		SAMPLING	1			FIELD MATERI	AL DESCRIPTION				
C PENERTRATION C RESISTANCE	4 WATER	DEPTH (metres)	DEPTH (RL)	SAMPLE OR FIELD TEST		GRAPHIC LOG	USC SYMBOL	SOIL / ROCK MATERIAL DESCRIPTION		CONSISTENCY DENSITY	MOISTURE	ADDITIONAL OBSERVATIONS	
		0.0	-				CI-CH	FILL: silty CLAY, medium to high plasticity, brown mottled grey and red, with sand and grave	el, trace plastic	St - VSt	w < PL	Controlled Fill	
		-											
		_	0.20			***					w > PL		_
		-											_
		0.5											-
		-											_
		_											_
		-	0.80				СН	illy CLAY, high plasticity, brown mottled pale grey, red and brown-orange, trace sand		VSt	w≈PL	Inferred Red Bluff Sandstone Residual Soil	_
		-										001	_
		1.0				X							_
		-				IX IX							_
		_											
		-											_
		1.5				X							
		-				X							_
	Encountered	-											_
	t Enco	-											_
	Not I	-											-
		2.0	2.00					Borehole Terminated @ 2m					-
		-											
		_											
		-											_
		2.5]										_
		-	ł										
		_	1										
		-	1										-
]										
		3.0											
		-											_
		-											
		-											_
		3.5											
PENETRATIO	N			CONSISTENCY Vs	Very	Soft		DENSITY MOISTURE CONDITION TEST Fb Friable D Dry PP	NOTES Pocket Penetrome	eter Test		Groundwater Level	
~	1 2	34		S	Soft Firm			VL Very Loose M Moist U50 L Loose W Wet U63	0 Undisturbed Sam	ple 50mr	n	UTP Unable to Penetrate	
		┙	á	St	Stiff	0		MD Medium Dense w < PL Moist, dry of plastic limit D	Disturbed Sample				
no re	sistence			VSt H	Very Hard	Stiff		D Dense w ≈ PL Moist, near plastic limit Bs VD Very Dense w > PL Moist, wet of plastic limit E	Environmental sa				
		re	fusal					w ≈ LL Wet, near liquid limit HS w > LL Wet, wet of liquid limit Cu					
HAM	_LOG_6.	0 2019		•								Sheet 1 of 1	

U			Gro	oundSci	ien	CE	4	ENGINEERING BOREHOLE LOG	Borehole JOB No :		BH22 G4589 283
CLIENT: Frasers Property Group Pty Ltd PROJECT: Five Farms Estate Site Classification - Stage 2&3 LOCATION: Clyde North TEST LOCATION: Refer to site plan, Appendix A DRILL METHOD: GT10 Dnil Rg						3283		EASTING: ND	TEST DA LOGGED CHECKE VANE SH INCLINA	D BY: D BY: HEAR:	12-Apr-22 NH GS NA 90°
HOLE DIAMET			100mm	SAMPLING		—		NORTHING: ND FIELD MATERIAL DESCRIPTION	SURFAC		ND
PENERTRATION RESISTANCE		metres)	DEPTH (RL)	SAMPLE OR FIELD TEST		GRAPHIC LOG	JSC SYMBOL	SOIL / ROCK MATERIAL DESCRIPTION	CON SISTENCY DENSITY	MOISTURE	ADDITIONAL OBSERVATIONS
1234	4 WATER	.0.0	DEP	SAN TES			_	Print 1997 AN analism to black plantistic known matterial area and real with pand and argual trans brief frammate		itw <pl< td=""><td>Controlled Fill</td></pl<>	Controlled Fill
		0.0 	0.15					FILL: sitly CLAY, medium to high plasticity, brown motified grey and red, with sand and gravel, trace brick fragments	51- 10	w > PL	
		0.5									
			0.60				СН	silty CLAY, high plasticity, grey mottled brown, with sand	VSt	w≈PL	
		-			1162						
		1.0	1.10	S7	U63			brown mottled pale grey and brown-orange, trace sand			
	ntered	1.5									
	Not Encountered										
		2.0	2.00					Borehole Terminated @ 2m			
		2.5									
		3.0									
		3.5									
→ [no res	1 2		fusal	CONSISTENCY Vs S F St VSt H	Very Soft Firm Stiff Very S	Stiff		DENSITY MOISTURE CONDITION TEST NOTES Fb Friable D Dry PP Pocket Penetro VL Very Loose M Moist U50 Undisturbed St L Loose W Wet U63 Undisturbed St MD Medium Dense w < PL Moist, dry of plastic limit	ample 50m ample 63m ple sample ane test	m	Groundwater Level UTP Unable to Penetrate Sheet 1 of 1

U			Gro	undSci	ien	ICE	A.	ENGINEERING BOREHOLE LOG	Borehole JOB No :		BH23 G4589.283	
CLIENT: PROJECT: LOCATION: TEST LOCATI DRILL METHO	IOD:	F C R	Five Farms E Clyde North Refer to site p GT10 Drill F	plan, Appendix A	on - Stage	e 2&3		EASTING: ND	TEST DA LOGGED CHECKE VANE SH INCLINAT) BY: D BY: IEAR: TION:	12-Apr-22 NH GS NA 90°	
HOLE DIAME	ETER: DRILL		100mm	SAMPLING		Τ_		NORTHING: ND FIELD MATERIAL DESCRIPTION	SURFAC	E RL:	ND	
 L PENERTRATION C RESISTANCE 	4 WATER	DEPTH (metres)	DEP TH (RL)	SAMPLE OR FIELD TEST		GRAPHIC LOG		SOIL / ROCK MATERIAL DESCRIPTION	CON SISTENCY DENSITY	MOISTURE	ADDITIONAL OBSERVATIONS	
		0.0	0.15				8	FILL: silly CLAY, medium to high plasticity, brown mottled grey and red, with sand and gravel, with brick fragments	St - VSI	t w < PL w > PL		
		0.5	0.60					FILL: silly SAND, fine to coarse grained, angular to subangular, brown, low plasticity silt	D	M	-	
		1.0	0.80				СН	silly CLAY, high plasticity, red mottled pale grey and brown-orange, trace sand	VSt	w≈PL	Inferred Red Bluff Sandstone Residual Soil	
	Not Encountered	1.5									.	
		2.0	2.00		+			Borehole Terminated @ 2m				
											.	
		2.5									-	
		3.0										
PENETRATIO		3.5		CONSISTENCY				DENSITY MOISTURE CONDITION TEST NOTES				-
	1 2 Isistence	refu	fusal	Vs S F St VSt H	Very Soft Firm Stiff Very Hard	ı v Stiff		Fb Friable D Dry PP Pocket Penetro VL Very Loose M Moist U50 Undisturbed Sa L Loose W Wet U63 Undisturbed Sa MD Medium Dense w < PL Moist, dry of plastic limit	mple 50mr mple 63mr le cample ne test	m	Groundwater Level UTP Unable to Penetrate Sheet 1 of 1	

APPENDIX C

Laboratory Test Reports

Material Test Report

Report Number:	G4589.2-1
Issue Number:	1
Date Issued:	02/05/2022
Client:	Frasers Property Australia c/- Beveridge Williams
	1 Glenferrie Road, Malvern VIC 3144
Project Number:	G4589.2
Project Name:	Five Farms Residential Development - Stage 2/3
Project Location:	Clyde North
Work Request:	8075
Dates Tested:	14/04/2022 - 26/04/2022

Ground Science Pty Ltd Ground Science Laboratory 13 Brock Street Thomastown Victoria 3074 Phone: (03) 9464 4617 Email: pelin@groundscience.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Pelin Erden gs-pelin NATA Accredited Laboratory Number: 15055

Shrink Swell Index AS 1289 7.1.1 & 2.1.1

SHITING SWEILINGER AS 1203 1.1.1 & 2.1.1					
Sample Number	4589.2-S1	4589.2-S2	4589.2-S3	4589.2-S5	4589.2-S6
Date Sampled	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022
Date Tested	19/04/2022	19/04/2022	19/04/2022	19/04/2022	20/04/2022
Material Source	**	**	**	**	**
Sample Location	BH1 (1.0 - 1.3m)	BH6 (0.8 - 1.0m)	BH10 (1.5 - 1.8m)	BH16 (0.6 - 0.9m)	BH19 (1.5 - 1.7m)
Inert Material Estimate (%)	0	10	5	5	0
Pocket Penetrometer before (kPa)	250	150	260	150	250
Pocket Penetrometer after (kPa)	135	80	200	100	125
Shrinkage Moisture Content (%)	31.7	17.6	18.1	15.9	18.6
Shrinkage (%)	6.3	0.9	1.9	1.6	2.5
Swell Moisture Content Before (%)	29.1	18.5	20.0	13.0	17.6
Swell Moisture Content After (%)	35.7	23.8	25.2	19.6	18.7
Swell (%)	1.1	-0.1	1.9	-0.0	0.9
Shrink Swell Index Iss (%)	3.8	0.5	1.6	0.9	1.6
Visual Description	silty CLAY, medium to high plasticity, mottled brown, grey	silty CLAY, low plasticity, mottled brown, grey, trace gravel, trace sand	Silty CLAY, medium to high plasticity, mottled brown, grey, trace gravel, trace sand	Sandy CLAY, low plasticity, brown, trace gravel	silty CLAY, medium plasticity, mottled brown, grey, orange, trace sand
Cracking	SC	MC	SC	MC	SC
Crumbling	No	No	No	No	No
Remarks	**	**	**	**	**

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.

Material Test Report

Report Number:	G4589.2-1
Issue Number:	1
Date Issued:	02/05/2022
Client:	Frasers Property Australia c/- Beveridge Williams
	1 Glenferrie Road, Malvern VIC 3144
Project Number:	G4589.2
Project Name:	Five Farms Residential Development - Stage 2/3
Project Location:	Clyde North
Work Request:	8075
Dates Tested:	14/04/2022 - 26/04/2022

Ground Science Pty Ltd Ground Science Laboratory 13 Brock Street Thomastown Victoria 3074 Phone: (03) 9464 4617 Email: pelin@groundscience.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Pelin Erden gs-pelin NATA Accredited Laboratory Number: 15055

tas

Shrink Swell Index AS 1289 7.1.1 & 2.1.1 Sample Number 4589.2-S7

Sample Number	4589.2-S7	4589.2-S8	4589.2-S10	4589.2-S12	4589.2-S13
Date Sampled	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022
Date Tested	20/04/2022	20/04/2022	20/04/2022	21/04/2022	21/04/2022
Material Source	**	**	**	**	**
Sample Location	BH22 (1.0 - 1.3m)	BH26 (0.5 - 0.8m)	BH32 (1.5 - 1.7m)	BH41 (0.5 - 0.8m)	BH44 (1.5 - 1.7m)
Inert Material Estimate (%)	0	5	5	0	0
Pocket Penetrometer before (kPa)	200	200	300+	150	300+
Pocket Penetrometer after (kPa)	150	150	125	100	150
Shrinkage Moisture Content (%)	23.4	22.2	22.3	18.7	24.9
Shrinkage (%)	6.2	2.3	4.4	1.2	4.1
Swell Moisture Content Before (%)	23.0	24.2	19.8	16.7	25.6
Swell Moisture Content After (%)	22.2	28.1	23.6	25.9	29.7
Swell (%)	0.3	0.2	1.4	0.1	2.4
Shrink Swell Index Iss (%)	3.5	1.3	2.8	0.7	2.9
Visual Description	Silty CLAY, low to medium plasticity, mottled brown, grey, orange, trace sand	silty CLAY, low to medium plasticity, mottled brown, grey, orange, trace gravel, trace sand	silty CLAY, medium plasticity, mottled grey, orange, red, trace gravel, trace sand	sandy CLAY, low plasticity, brown	Silty CLAY, medium to high plasticity, mottled brown, grey, orange, trace sand
Cracking	SC	SC	SC	HC	SC
Crumbling	No	No	No	No	No
Remarks	**	**	**	**	**

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.

Material Test Report

Report Number:	G4589.2-1
Issue Number:	1
Date Issued:	02/05/2022
Client:	Frasers Property Australia c/- Beveridge Williams
	1 Glenferrie Road, Malvern VIC 3144
Project Number:	G4589.2
Project Name:	Five Farms Residential Development - Stage 2/3
Project Location:	Clyde North
Work Request:	8075
Dates Tested:	14/04/2022 - 26/04/2022

Ground Science Pty Ltd Ground Science Laboratory 13 Brock Street Thomastown Victoria 3074 Phone: (03) 9464 4617 Email: pelin@groundscience.com.au Accredited for compliance with ISO/IEC 17025 - Testing

Atas

Approved Signatory: Pelin Erden gs-pelin NATA Accredited Laboratory Number: 15055

Shrink Swell Index AS 1289 7.1.1 & 2.1.1				
Sample Number	4589.2-S14	4589.2-S15		
Date Sampled	14/04/2022	14/04/2022		
Date Tested	26/04/2022	26/04/2022		
Material Source	**	**		
Sample Location	BH46 (0.7 - 1.0m)	BH50 (1.2 - 1.5m)		
Inert Material Estimate (%)	10	5		
Pocket Penetrometer before (kPa)	120	160		
Pocket Penetrometer after (kPa)	110	150		
Shrinkage Moisture Content (%)	16.8	15.9		
Shrinkage (%)	0.8	2.1		
Swell Moisture Content Before (%)	15.3	15.0		
Swell Moisture Content After (%)	19.9	23.8		
Swell (%)	-0.1	0.4		
Shrink Swell Index Iss (%)	0.4	1.3		
Visual Description	silty CLAY, medium plasticity, brown, trace gravel, with sand	silty CLAY, medium plasticity, mottled brown, grey, orange, trace gravel, with sand		
Cracking	SC	SC		
Crumbling	No	**		
Remarks	**	**		

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.